Commitment of human pluripotent stem cells to a neural lineage is induced by the pro-estrogenic flavonoid apigenin

نویسندگان

  • Cleide S. Souza
  • Bruna S. Paulsen
  • Sylvie Devalle
  • Silvia Lima Costa
  • Helena L. Borges
  • Stevens K. Rehen
چکیده

Flavonoids are polyphenolic compounds that are ubiquitous in plants and have biological effects on cancer cells and other cell types. In particular, apigenin (API) has been shown to bind to estrogen receptors, which affect the development, maturation, function, and plasticity of the nervous system. The aim of this study was to investigate the effects of 4?,5,7trihydroxyflavone (API) upon the neural differentiation of human pluripotent stem cells. Treatment of both human embryonic stem cells and human induced pluripotent stem cells with API increased the number of nestin (NES ) neural progenitor cells compared to untreated controls. API also induced the expression of neuronal markers, such as b-tubulinIII (TUBB3), microtubule-associated protein 2 (MAP2), polysialylated-neural cell adhesion molecule (PSA-NCAM), synapsin 1 (SYN1), neurofilament (NEF), choline acetyltransferase (CHAT), glutamate decarboxylase (GAD1), and parvalbumin (PVALB) proteins. Antagonists of estrogen receptors (ESR1 and ESR2) suppressed the effects of API. API-induced differentiation was followed by increased expression of retinoic acid (RA) receptors (RARA and RARB) and retinoic X receptor (RXR) G, but not RARG1 or RXRB. Neural differentiation induced by API was drastically reduced by the inhibition of RARs. In addition, API also increased synaptogenesis in RA-differentiated neurons. These findings suggest that API induces neural differentiation of human pluripotent stem cells through estrogen receptor and RAR signaling and improves their functional differentiation into neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

Alpha-Tocopherol increases the proliferation of induced pluripotent stem cell derived neural progenitor cells

In addition to its antioxidant effect, Vitamin E or α–tocopherol is suggested to enhance remyelination in the animal model of non-inflammatory demyelination. In this study, the possible proliferative effect of vitamin E on human- induced pluripotent stem cell-derived neural progenitors (hiPS-NPs) and the underlying mechanisms were investigated in vitro. NPs were induced from iPS cells via 3 ste...

متن کامل

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015